首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9233篇
  免费   893篇
  国内免费   665篇
  2023年   94篇
  2022年   125篇
  2021年   427篇
  2020年   295篇
  2019年   407篇
  2018年   403篇
  2017年   292篇
  2016年   406篇
  2015年   597篇
  2014年   747篇
  2013年   734篇
  2012年   867篇
  2011年   747篇
  2010年   461篇
  2009年   420篇
  2008年   400篇
  2007年   405篇
  2006年   341篇
  2005年   291篇
  2004年   233篇
  2003年   251篇
  2002年   226篇
  2001年   194篇
  2000年   180篇
  1999年   189篇
  1998年   101篇
  1997年   99篇
  1996年   103篇
  1995年   74篇
  1994年   82篇
  1993年   55篇
  1992年   81篇
  1991年   71篇
  1990年   60篇
  1989年   62篇
  1988年   47篇
  1987年   40篇
  1986年   18篇
  1985年   29篇
  1984年   12篇
  1983年   23篇
  1982年   14篇
  1981年   12篇
  1980年   7篇
  1979年   16篇
  1978年   7篇
  1976年   6篇
  1975年   5篇
  1973年   9篇
  1972年   4篇
排序方式: 共有10000条查询结果,搜索用时 609 毫秒
51.
A major challenge in modern biology is understanding how the effects of short-term biological responses influence long-term evolutionary adaptation, defined as a genetically determined increase in fitness to novel environments. This is particularly important in globally important microbes experiencing rapid global change, due to their influence on food webs, biogeochemical cycles, and climate. Epigenetic modifications like methylation have been demonstrated to influence short-term plastic responses, which ultimately impact long-term adaptive responses to environmental change. However, there remains a paucity of empirical research examining long-term methylation dynamics during environmental adaptation in nonmodel, ecologically important microbes. Here, we show the first empirical evidence in a marine prokaryote for long-term m5C methylome modifications correlated with phenotypic adaptation to CO2, using a 7-year evolution experiment (1,000+ generations) with the biogeochemically important marine cyanobacterium Trichodesmium. We identify m5C methylated sites that rapidly changed in response to high (750 µatm) CO2 exposure and were maintained for at least 4.5 years of CO2 selection. After 7 years of CO2 selection, however, m5C methylation levels that initially responded to high-CO2 returned to ancestral, ambient CO2 levels. Concurrently, high-CO2 adapted growth and N2 fixation rates remained significantly higher than those of ambient CO2 adapted cell lines irrespective of CO2 concentration, a trend consistent with genetic assimilation theory. These data demonstrate the maintenance of CO2-responsive m5C methylation for 4.5 years alongside phenotypic adaptation before returning to ancestral methylation levels. These observations in a globally distributed marine prokaryote provide critical evolutionary insights into biogeochemically important traits under global change.  相似文献   
52.
53.
54.
Increased disease resistance through improved immune capacity would be beneficial for the welfare and productivity of farm animals. To identify genomic regions responsible for immune capacity traits in swine, a genome-wide association study was conducted. In total, 675 pigs were included. At 21 days of age, all piglets were vaccinated with modified live classical swine fever vaccine. Blood samples were sampled when the piglets were 20 and 35 days of age, respectively. Four traits, including Interferon-gamma (IFN-γ) and Interleukin 10 (IL-10) levels, the ratio of IFN-γ to IL-10 and Immunoglobulin G (IgG) blocking percentage to CSFV in serum were measured. All the samples were genotyped for 62,163 single nucleotide polymorphisms (SNP) using the Illumina porcineSNP60k BeadChip. After quality control, 46,079 SNPs were selected for association tests based on a single-locus regression model. To tackle the issue of multiple testing, 10,000 permutations were performed to determine the chromosome-wise and genome-wise significance level. In total, 32 SNPs with chromosome-wise significance level (including 4 SNPs with genome-wise significance level) were identified. These SNPs account for 3.23% to 13.81% of the total phenotypic variance individually. For the four traits, the numbers of significant SNPs range from 5 to 15, which jointly account for 37.52%, 82.94%, 26.74% and 24.16% of the total phenotypic variance of IFN-γ, IL-10, IFN-γ/IL-10, and IgG, respectively. Several significant SNPs are located within the QTL regions reported in previous studies. Furthermore, several significant SNPs fall into the regions which harbour a number of known immunity-related genes. Results herein lay a preliminary foundation for further identifying the causal mutations affecting swine immune capacity in follow-up studies.  相似文献   
55.
We examined the combined effects of light and pCO2 on growth, CO2-fixation and N2-fixation rates by strains of the unicellular marine N2-fixing cyanobacterium Crocosphaera watsonii with small (WH0401) and large (WH0402) cells that were isolated from the western tropical Atlantic Ocean. In low-pCO2-acclimated cultures (190 ppm) of WH0401, growth, CO2-fixation and N2-fixation rates were significantly lower than those in cultures acclimated to higher (present-day ~385 ppm, or future ~750 ppm) pCO2 treatments. Growth rates were not significantly different, however, in low-pCO2-acclimated cultures of WH0402 in comparison with higher pCO2 treatments. Unlike previous reports for C. watsonii (strain WH8501), N2-fixation rates did not increase further in cultures of WH0401 or WH0402 when acclimated to 750 ppm relative to those maintained at present-day pCO2. Both light and pCO2 had a significant negative effect on gross : net N2-fixation rates in WH0402 and trends were similar in WH0401, implying that retention of fixed N was enhanced under elevated light and pCO2. These data, along with previously reported results, suggest that C. watsonii may have wide-ranging, strain-specific responses to changing light and pCO2, emphasizing the need for examining the effects of global change on a range of isolates within this biogeochemically important genus. In general, however, our data suggest that cellular N retention and CO2-fixation rates of C. watsonii may be positively affected by elevated light and pCO2 within the next 100 years, potentially increasing trophic transfer efficiency of C and N and thereby facilitating uptake of atmospheric carbon by the marine biota.  相似文献   
56.
57.
Urethral stricture (US) is a common disorder of the lower urinary tract in men caused by fibrosis. The recurrence rate of US is high; however, there are no effective therapies to prevent or treat urethral fibrosis. The pathogenesis of urethral fibrosis involves myofibroblast activation and excessive extracellular matrix (ECM) deposition. The molecular mechanisms underlying this pathological activation are not completely understood. It has been demonstrated that Notch signalling contributes to the development of fibrosis and inflammation. However, whether this contributes to urethral fibrosis remains unclear. In this study, activation of Notch signalling was observed in patients with US. Additionally, it was noted that activation of Notch signalling promoted ECM production and myofibroblast activation in human urethral scar fibroblasts (HUSFs) treated with transforming growth factor (TGF) β1. However, the Notch inhibitor N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT) suppressed activation of Notch signalling as well as proliferation and migration of the TGFβ1-treated HUSFs. Additionally, DAPT ameliorated TGFβ1-induced urethral fibrosis in Sprague Dawley rats by suppressing ECM production, myofibroblast activation and the TGFβ signalling pathway. These findings demonstrate that Notch signalling may be a promising and potential target in the prevention or treatment of urethral fibrosis.  相似文献   
58.
Li  Ping  Yu  Chao  Zeng  Fan-Shuo  Fu  Xiaoyan  Yuan  Xiao-Jing  Wang  Qin  Fan  Cundong  Sun  Bao-Liang  Sun  Qiang-San 《Neurochemical research》2021,46(5):1112-1118
Neurochemical Research - Immune response plays a vital role in the pathogenesis of neuropathic pain. Immune response-targeted therapy becomes an effective strategy for treating neuropathic pain....  相似文献   
59.
For high-dimensional and massive data sets, traditional centralized gene expression programming (GEP) or improved algorithms lead to increased run-time and decreased prediction accuracy. To solve this problem, this paper proposes a new improved algorithm called distributed function mining for gene expression programming based on fast reduction (DFMGEP-FR). In DFMGEP-FR, fast attribution reduction in binary search algorithms (FAR-BSA) is proposed to quickly find the optimal attribution set, and the function consistency replacement algorithm is given to solve integration of the local function model. Thorough comparative experiments for DFMGEP-FR, centralized GEP and the parallel gene expression programming algorithm based on simulated annealing (parallel GEPSA) are included in this paper. For the waveform, mushroom, connect-4 and musk datasets, the comparative results show that the average time-consumption of DFMGEP-FR drops by 89.09%%, 88.85%, 85.79% and 93.06%, respectively, in contrast to centralized GEP and by 12.5%, 8.42%, 9.62% and 13.75%, respectively, compared with parallel GEPSA. Six well-studied UCI test data sets demonstrate the efficiency and capability of our proposed DFMGEP-FR algorithm for distributed function mining.  相似文献   
60.
The N1-methyl-Adenosine (m1A58) modification at the conserved nucleotide 58 in the TΨC loop is present in most eukaryotic tRNAs. In yeast, m1A58 modification is essential for viability because it is required for the stability of the initiator-tRNAMet. However, m1A58 modification is not required for the stability of several other tRNAs in yeast. This differential m1A58 response for different tRNA species raises the question of whether some tRNAs are hypomodified at A58 in normal cells, and how hypomodification at A58 may affect the stability and function of tRNA. Here, we apply a genomic approach to determine the presence of m1A58 hypomodified tRNAs in human cell lines and show how A58 hypomodification affects stability and involvement of tRNAs in translation. Our microarray-based method detects the presence of m1A58 hypomodified tRNA species on the basis of their permissiveness in primer extension. Among five human cell lines examined, approximately one-quarter of all tRNA species are hypomodified in varying amounts, and the pattern of the hypomodified tRNAs is quite similar. In all cases, no hypomodified initiator-tRNAMet is detected, consistent with the requirement of this modification in stabilizing this tRNA in human cells. siRNA knockdown of either subunit of the m1A58-methyltransferase results in a slow-growth phenotype, and a marked increase in the amount of m1A58 hypomodified tRNAs. Most m1A58 hypomodified tRNAs can associate with polysomes in varying extents. Our results show a distinct pattern for m1A58 hypomodification in human tRNAs, and are consistent with the notion that this modification fine tunes tRNA functions in different contexts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号